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Context . P A

e 12.3 million people live in
Rwanda (2018)

° % of the population is food
insecure

e 89% of the country’s economy
is small-scale agriculture

e 3 essential food secure crop

types:
o Banana
o Maize

o Legumes

Image Source: USAID



Objective

Develop an accurate yet generalizable machine learning algorithm for
identifying crops, with a particular focus on bananas, maize, and
legumes?®, in Rwanda.

* These three “staple crops” are key for combating food insecurity in Rwanda.



The Dataset 2,606 images collected from drones flown across five
acro-ecological regions of Rwanda. Images fall in six
classes.
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https://mlhub.earth/data/rti_rwanda_crop_type
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Two Approaches

Supervised Machine Learning: Deep Learning:
1.  K-Nearest Neighbors 1. Simple CNN
2. Random Forest 2. VGGI16 _

3. MobileNetV2



Comparing Testing Accuracy

0.42 0.62 0.45 0.78 0.79




Our two best models

VGG16 and MobileNetV2



1) VGG16: The Model Architecture

VGGI6 is a large neural network that
consists of 16 pre-trained convolution
layers with weights and is considered to be
one of the best models for object detection
and classification to date.
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https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c

Model: "model_:
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Total params: 19,435,078
Trainable params: 4,720,390
Non-trainable params: 14,714,688




Test Accuracy: 0.78

VGG16: Normalized Confusion Matrix

1) VGG16: Results
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2) MobileNetV2: The Model Architecture

MobileNetV2 is a very effective feature

extractor for object detection,

segmentation, and classification.
MobileNetV2 differs from the original
MobileNet by using inverted residual blocks
with bottlenecking features, and has a
lower parameter count.
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Sources: MobileNetV2: The Next Generation of On-Device Computer Vision Networks (right)
MobileNetV2: Inverted Residuals and Linear Bottlenecks (left)



https://ai.googleblog.com/2018/04/mobilenetv2-next-generation-of-on.html
https://arxiv.org/pdf/1801.04381.pdf

2) MobileNetV2: Training the Model

Training and Validation Accuracy
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Test Accuracy: 0.79
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Discussion of Results

MobileNetV2 is our model with the highest classification accuracy score of 79% (VGG16 is the second best, with 78% accuracy)..
Classification accuracy is high for the banana, forest, maize, and structure labels.

While we were able to develop a model with an acceptable level of accuracy, we were not able to achieve acceptable accuracies for all
three priority crops (bananas, maize, and legumes). In fact, our classification accuracy for legumes is much lower than the other labels.

In practice, we would want to improve the classification accuracy of legumes before recommending our model for use in the real world.



D . . V G G1 6 Despite poor classification accuracy for legumes, we would consider exploring ways to
I S C u S S I O n - hypertune our VGG16 model as the overall accuracy score was fairly acceptable (78%).
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D I S C u S S I O n = M O b | | e N etV2 Accuracy still the worst for legumes. Most misclassification for legumes

are with images labeled ‘other’. Reminder that overall accuracy was 79%.
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** NOTE: images displayed may be augmented
D



Areas For Improvement

1. Improve classification accuracy of legumes label
a. Oversample legumes data
2. Improve overall model accuracy

a. VGGI16: Hypertune “top” of the model’s dense layers
b. MobileNetV2:
i. Experiment with other data augmentation techniques
ii. Try other weights (pre-trained and not)
iii. Run model on just the three secure crop labels to see if the forest, other, and structure

images are creating noise that prevents precise learning when training the model

3. Explore multispectral imagery



Thank you!




